Positive radial solutions for quasilinear biharmonic equations
نویسندگان
چکیده
منابع مشابه
Radial entire solutions for supercritical biharmonic equations ∗
We prove existence and uniqueness (up to rescaling) of positive radial entire solutions of supercritical semilinear biharmonic equations. The proof is performed with a shooting method which uses the value of the second derivative at the origin as a parameter. This method also enables us to find finite time blow up solutions. Finally, we study the convergence at infinity of regular solutions tow...
متن کاملPositive decreasing solutions of quasilinear dynamic equations
We consider a quasilinear dynamic equation reducing to a half-linear equation, an Emden–Fowler equation or a Sturm–Liouville equation under some conditions. Any nontrivial solution of the quasilinear dynamic equation is eventually monotone. In other words, it can be either positive decreasing (negative increasing) or positive increasing (negative decreasing). In particular, we investigate the a...
متن کاملPositive Solutions of Quasilinear Elliptic Equations
(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...
متن کاملPositive radial solutions for quasilinear systems in an annulus
We show that either superlinearity or sublinearity assumptions can guarantee the existence of positive radial solutions for quasilinear systems involving the p-Laplacian. 2005 Elsevier Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2016
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.10.011